ELECTROCHEMICAL PROCESSES FOR
WATER TREATMENT:
ELECTROREDUCTION AND
ELECTROSORPTION



Focus of today’s lecture

e Electroreduction and indirect oxidation
processes, and their use for groundwater
treatment

e Electrosorption: Salts removal for water
desalination (process called Capacitive
Deionization or CDI) and organics removal



PROCESSES DRIVEN BY FARADAIC
REACTIONS AT THE CATHODE



Faradaic reactions

Occur when charges (e.g., electrons) are

transferred across the metal-solution interface.
Electron transfer causes oxidation or reduction
to occur (these are governed by Faraday Law’s).

Give few examples?

When it comes to electrochemical
transformation/removal of water pollutants...



Direct and indirect degradation
processes induced by Faradaic
reactions
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INDIRECT REDUCTION MEDIATED
BY CATHODE



Hydrodechlorination or HDC

e e.g. tetrachloroethylene, thrichloroethylene,
chlorophenol, chlorobenzene
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Hydrodechlorination or HDC

Electrochemical reduction through hydrodechlorination (HDC) occurs at the cathode due to water
electrolysis (hydrogen evolution reaction or HER).

Step 1: Process starts with electrochemical hydrogen adsorption (Volmer reaction) where atomic
hydrogen (H,) is chemically adsorbed on active site of the electrode surface (M)

H' + M +e = M—H™ (acid solution)

H,O +M + e = M—-H* + OH" (alkaline solution)



Hydrodechlorination or HDC

Electrochemical reduction through hydrodechlorination (HDC) occurs at the cathode due to water
electrolysis.

Step 2: The H, further involves in electrochemical desorption (Heyrovsky reaction)

M-H* + H' + e = M + H, (acid solution)

M—-H* + H,O + e~ = M + OH™ + H, (alkaline solution)



Hydrodechlorination or HDC

Electrochemical reduction through hydrodechlorination (HDC) occurs at the cathode due to water
electrolysis.

Step 2: OR chemical desorption (Tafel reaction) to create hydrogen gas or interacts with the
reducible molecules like chlorinated substances, which leads to HDC.

2M—-H* = 2M + H, (both acid and alkaline solutions)



Influence of cathode
material

The good HDC catalyst
should have strong bond
with H, to allow proton-
electron transfer process
but weak enough to
ensure the bond breaking
and the product release.

If the hydrogen-metal
surface (H_-M) binding
energy is too high,
adsorption is slow and
limits the overall rate but if
it is too low, desorption is
slow.
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Modern “Volcano” plots

There is a clear separation
into three groups: sp
metals, which are the
worst catalysts, coinage
metals, which are
intermediate, and the d
metals, which contain the
best catalysts, but also Ni
and Co, which are
mediocre.
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What has major effect on HDC?
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Same cathodes and process but for
different contaminant removal?
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PRACTICAL APPLICATIONS



Approach 1

GROUND WATER CIRCULATION
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In Situ Electrodes

Approach 2
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Results

Anode: GHCl; + IBH,O — 2COy,q + 6e” + 3CI0 + 9H;07
Cathode: CoHCl3 + 10e™ + 7TH2O — 2CHyq + 3CI7 + 7OH™
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Another effect on HDC?

Competitive reactions: O, reduction!
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INDIRECT OXIDATION MEDIATED BY
CATHODE



Indirect oxidation processes

Cathodes can support formation of H,O, via 2-
electron O, reduction reaction (2e ORR)

Aqueous and gaseous
contaminants
2-electron ORR activation

02 R —— H2°2 meeemmmp  -0OH

Cabon based cathodes, . Oxidized/degraded
artive carbon st et Fe2 non-Fe metals, UV, products
modified cathodes, hetero- uttrasound, FeOCl,
atoms doped carbon MoS, g-CoNe, Agueous phase Gaseous phase
CHtucE. Al i kil ® Dyes ® VOCs removal
decorated carbon cathodes . -
® Pestiddes/herbicides ® SO removal
® Phenolic compounds ® NO oxidation
® Drugs ® Hg® oxidation
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Cathode material

Activated Carbons T EEruis Pellets




Modification
of carbon
cathodes

Cathode material

.4

Introducing other
active carbon -
matenals

Doping with
hetero-atoms

Introducing metal <
oxides

Carbon black

Acelylene black

Carbon nanotubes (CNTs)

Graphene

O-doping

M-doping

Chemical oxidation

(H:Ck, Fenton reagent, HNO,, etc)

Electrochemical axidabon
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Cathode material

Modifications: heteroatom-doping (i.e. oxygen-
containing functional groups)
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Cathode material

Aqueous and gaseous

contaminants
2-electron ORR ' activation
02 T—— Hﬂa-z - ey -0OH
Cabon based cathodes, ) Oxidized/degraded
active carbon materials RO IORES L products
modified cathodes, hetero- uttrasound, FeOCl,
atoms doped carbon MoSy -GNy, Agqueous phase Gaseous phase
cathodes, metal oxides carbon catalysts
! ® Dyes ® VOCs removal
decorated carbon cathodes
® Pestiddes/hericides ® SO, removal
® Phenolic compounds ® NO oxidation
@ Drugs ® Hg° cxidation

AC + H,O, — AC" + OH™ + *OH

AC" + HyOp, — AC + H" 4+ HOy*
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ELECTROSORPTION: SALTS REMOVAL
FOR WATER DESALINATION (PROCESS
CALLED CAPACITIVE DEIONIZATION OR
CDI) AND ORGANICS REMOVAL



Electrosorption

Surface plane
Inner Helmholtz plane
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Charge separates across the interface, resulting in the formation of strong electrical double
layers (EDL) near the high conductivity and high surface area surfaces. When the electrode is
charged and put into a solution with ions, the interface of the charged electrode and ions rich
solution will be occupied with counter ions as a result of the Coulomb force, forming EDL.
Under some conditions, a given electrode-solution interface will show a range of potentials where no

charge-transfer reactions occur because such reactions are thermodynamically or kinetically unfavorable.
Charge does not cross the interface but external currents can flow!
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Adsorbent/precursor

Electrosorption

Adsorbate

Maximum adsorption capacity (mg/g)

Activated carbon fibers (commercial)
Polyacrylonitrile resin
Activated carbon fibers (commercial)

Activated carbon cloth (commercial)
Spectracarb 2225 (commercial)
Activated carbon fibers (commercial)

Activated carbon fibers (commercial)
Polyacrylonitrile resin
Polyacrylonitrile resin

NFEN 12915 (commercial)
Spectracarb 2225 (commercial)

Coconut charcoal
Spectracarb 225 (commercial)

Acid Orange 7 dye
Phenol
Naphthalenesulfonic acid
Benzyl alcohol

Naphthoic acid
Bentazone

Chromium (VI)
Phenoxide ions
p-Nitrophenol

Sodium dodecylbenzene sulfonate
Uranium

Aniline

m-Cresol

Metribuzin pesticide
Nitrate

Nitrite

Phenol

Ethyl xanthate
Thiocyanate

644.59
225.86
320.00
210,00
200.00
30.47
7.28
207.04
407.59
766.66
5.02
315.71
367.68
210.00
112
0.83
188.00
1120.55
823.25
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Anionic dye removal efficiency

Electrosorption

Accelerating the adsorption rate
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Electrosorption

Pot. E/mV vs Ag/AgCl
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Capacitive deionization or CDI

Current Collector
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Upon applying a voltage difference
between two porous carbon
electrodes, ions are attracted to the
oppositely charged electrode.

As a result, desalinated water is
produced.
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Mechanism

Capacitive ion storage is the
phenomenon of the formation of an
electrical double layer (EDL), where
upon applying a charge, ions are
captured electrostatically and stored
capacitively in the diffuse layer formed
next to the carbon interface.

The formation of the capacitive EDL is
the heart of the CDI process.

Non-Faradaic Effects

a) Capacitive ion storage
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Types of reactors
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